Rhesus monkey embryos produced by nuclear transfer from embryonic blastomeres or somatic cells.
نویسندگان
چکیده
Production of genetically identical nonhuman primates would reduce the number of animals required for biomedical research and dramatically impact studies pertaining to immune system function, such as development of the human-immunodeficiency-virus vaccine. Our long-term goal is to develop robust somatic cell cloning and/or twinning protocols in the rhesus macaque. The objective of this study was to determine the developmental competence of nuclear transfer (NT) embryos derived from embryonic blastomeres (embryonic cell NT) or fetal fibroblasts (somatic cell NT) as a first step in the production of rhesus monkeys by somatic cell cloning. Development of cleaved embryos up to the 8-cell stage was similar among embryonic and somatic cell NT embryos and comparable to controls created by intracytoplasmic sperm injection (ICSI; mean +/- SEM, 81 +/- 5%, 88 +/- 7%, and 87 +/- 4%, respectively). However, significantly lower rates of development to the blastocyst stage were observed with somatic cell NT embryos (1%) in contrast to embryonic cell NT (34 +/- 15%) or ICSI control embryos (46 +/- 6%). Development of somatic cell NT embryos was not markedly affected by donor cell treatment, timing of activation, or chemical activation protocol. Transfer of embryonic, but not of somatic cell NT embryos, into recipients resulted in term pregnancy. Future efforts will focus on optimizing the production of somatic cell NT embryos that develop in high efficiency to the blastocyst stage in vitro.
منابع مشابه
P-86: Production of Cloned Mice by Somaticm Cell Nuclear Transfer
Background: For several years, mammalian cloning by splitting an early embryo or nuclear transfer into oocytes method has been successfully performed. Cloning is now also possible using adult somatic cells. Although it has now been 15 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), the success rate for producing live offspring by cloning is lo...
متن کاملOct-4 expression in pluripotent cells of the rhesus monkey.
The POU (Pit-Oct-Unc)-domain transcription factor, Oct-4, has become a useful marker of pluripotency in the mouse. It is found exclusively in mouse preimplantation-stage embryos after embryonic genome activation and is a characteristic of mouse embryonic stem (ES) cells, and its absence in knockout mice precludes inner cell mass (ICM) formation in blastocysts. Expression of Oct-4 has also been ...
متن کاملO-18: Epigenetic Modification of Cloned Embryo Development; State of ART
Background: At the outset of the somatic cell nuclear transfer (SCNT) process, the chromatin structure of the somatic cell which governs its state of differentiation undergoes dramatic changes, called reprogramming, and is compelled back to the embryonic stage. However, the overall epigenetic makeup of the resultant cloned embryos has been acknowledged far different from the fertilized embryos....
متن کاملA comparative approach to somatic cell nuclear transfer in the rhesus monkey.
BACKGROUND Despite the potential utility of primate somatic cell nuclear transfer (SCNT) to biomedical research and to the production of autologous embryonic stem (ES) cells for cell- or tissue-based therapy, a reliable method for SCNT is not yet available. Employing the rhesus monkey as a clinically relevant animal model, we have compared a conventional electrofusion method for SCNT with a one...
متن کاملReprogramming after Chromosome Transfer into Mouse Blastomeres
It is well known that oocytes can reprogram differentiated cells, allowing animal cloning by nuclear transfer. We have recently shown that fertilized zygotes retain reprogramming activities, suggesting that such activities might also persist in cleavage-stage embryos. Here, we used chromosome transplantation techniques to investigate whether the blastomeres of two-cell-stage mouse embryos can r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biology of reproduction
دوره 66 5 شماره
صفحات -
تاریخ انتشار 2002